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OUTLINE

• Introduction to Heavy Ion Fusion (HIF)

p Recent Robust Point Design (RPD) – a self-consistent,

detailed, and conservative HIF power plant design

• Why are we concerned about pressure rise in a linac?

• Pressure rise issues at several Hz

• Measurements of gas desorption & electron emission

• Hypotheses on sources of gas and electrons
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3 - 7 MJ     x    ~ 10 ns               ⇒⇒⇒⇒     ~ 500 Terawatts

Ion Range:     0.02 - 0.2 g/cm2  ⇒⇒⇒⇒          1- 10 GeV 

Beam charge (3-7 MJ/1-4 GeV) ⇒⇒⇒⇒    few mCoul

Target Requirements establish accelerator
requirements for power plant driver

0.7 cm

1.5 cm
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Artist s Conception of an HIF Power Plant on a few km2 site

120 beams
Multibeam
Accelerator
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Efficiency increases as current increases

⇓⇓⇓⇓

Multiple beams within
single induction core

Induction Acceleration is used for efficiency

B
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The First Wall Protected by Neutron-thick Molten Salt FLiBe,
FLiBe is a low Z salt ⇒ low activation ⇒ Green fusion energy

Crossing jets 
form beam ports

Vortices shield
beamline penetrations

Oscillating jets
form main pocket

(One Half Cut Away)

But vapor density ~ 1013 cm-3 too high for accelerator
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The Robust Point Design beam line — pumps
and blocks chamber vapor from accelerator
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Building block pulse shape — illustrative of
conservative approach in Robust Point Design

˚

˚

Beam and Pulse Shape Requirements

48 foot pulse beams:
T = 3.3 GeV,   EF = 1.76 MJ

72 main pulse beams:
T = 4.0 GeV,   EM = 5.25 MJ

120 total beams:
ED = 7.0 MJ
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Robust Point
Design (2.8 B$)
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(fixed number of beams, initial pulse length,
and quadrupole field strength)

Clearance

range being explored

~$1B

System studies show that driver cost reduced at high fill
factor [fill factor may be limited by beam-induced desorption]

Electron Cloud Effects (ECE) may also limit HIF Fill factor 
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Gas desorption (or ECE) may be an issue in HIF
linacs

• Economic mandate to maximally fill beam pipe

• Linac with high line charge density (Beam potential > 1 kV)
{ionized gas ions expelled to wall, ΓΓΓΓog ~ 10 }

• Induction accelerator – pulse duration up to ~20 µs at injection,
down to ~0.2 µs at higher energy [Time for desorbed gas to reach
beam], ~5 Hz rep. rate [time to pump desorbed gas?], multiple
beams in parallel, frequent acceleration gaps, large neutral
desorption coefficients at pipe wall (~103 - 104 in present HIF-VNL,
CERN, and GSI heavy-ion accelerators)

• Heavy-ions – stripping cross sections σσσσ ∝∝∝∝ E-0.5, σσσσ v ∝∝∝∝ E0; don’t win
at high energy like proton accelerator where σσσσ ∝∝∝∝ E-1

• Large fraction of length occupied by quadrupoles (>50% at
injector end)
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Heavy ions may hit wall multiple times,
increasing desorption

TRIM Monte Carlo Code predicts
• 60-70% scatter at 88-89°
• 0.05-0.5% scatter at 0-45°

⇒ Beam scrapers effective
• Spread in angle ~0.2 rad.
• Issues

- Spreads ion loss azimuthally
- Causes electron emission
- Scattering decreases slowly with

energy near grazing incidence.
50,000 1.8 MeV K+ incident on SS at 45 deg., 0.5% scatter
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Gas buildup can limit peak beam current in
rapidly pulsed accelerator
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Ionize gas - Γog=10 Charge-exchange loss of beam

Halo loss Pumping: fwp = fraction of wall that pumps

Solve for Ib, convert to peak current with inverse duty cycle at 5 Hz.

small

nb,o {vb,o}beam, neutral density (m-3) {velocity (m/s)}
σi cross section for beam ionization of gas 
σx charge-exchange of beam on gas
ab {rw }beam radius; {wall radius}
Γog,ob desorption coefficient for expelled ion (from gas), beam ion.
fhalo, fwp fraction beam lost per m, fraction wall open to cryo-pump.

Where
τb = beam
    duration
    (≤20 µs)
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Beam desorption coefficients necessary for HIF:

I

I

• HIF cold bore: each beam pumped by its own beam tube, limit applies to
each beam [I need Γob < 2 x104  for Ib ≥1 A].

• Warm bore: pumping between quad. magnets, limit applies to sum of
beam currents in array [I  need Γob < 103 for Ib ≥ 100 A].

• Both limits relaxed if beam halo loss less than 10-4/m
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Measure electron emission and gas desorption from 1 MeV
K+ beam impact on target

Gas, electron source diagnostic (GESD)

• Measure coefficient of electron and gas emission per incident K+ ion.
• Calibrates beam loss from electron currents to flush wall electrodes.
• Evaluate mitigation techniques: baking, cleaning, surface treatment…

Ion gauge

Target, angle
~2o-15o

Reflected ion
collector

Electron
Suppressor

Beam

Suppressor grid

Grid & target bias varied

Faraday cup

Beam

Tiltable target
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GESD secondary electron yield (SEY) varies
with cos(θθθθ)-1

θ δ

L

L = δ /cos(θ)

• Simple model gives cos(θ)-1

- Delta electrons pulled from
material by beam ions (dE/dx)

- Electrons from depth  > δ  (δ~
few nm) cannot leave surface

- Ion path length in depth δ is L.
L = δ /cos(θ)

• Results depart from this near
grazing incidence where the
distance for nuclear scattering
is < L1

1. P. Thieberger,A. L. Hanson, D. B. Steski, et al., Phys. Rev. A 61, 42901 (2000).

0

50

100

150

76 78 80 82 84 86 88 90

Angle of incidence (deg.)
C

oe
ff

ic
ie

nt
 o

f 
el

ec
tr

on
 e

m
is

si
on

SEY
6.06/cos
SRIM(22A)

Angle from normal (deg.)

G
ra

zi
ng

 in
ci

de
nc

e



The Heavy Ion Fusion Virtual National LaboratoryMolvik,  BNL-1203, 16

GESD gas desorption coefficient varies more slowly than
cos(θθθθ)- 1 ∴∴∴∴ not mainly from adsorbed gas layers

Model:
• Gas desorption results from

electronic sputtering of gas film on
surface plus dust and oxides on
surface and impurities near surface.

• Film would result in cos(θ)- 1 [not
seen so other sources dominate.]
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Similar results reported for 800 MeV Pb on SS at CERN
E. Mahner, et al., PRST-AB 6, 013201 (2003)
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Is SEY ∝∝∝∝ 1/cos because electrons originate in
beam-ionized gas?  — No

Bead-Blasted Target, 1 MeV K+, Bands show standard 
deviation, 7-14-03
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• Gas expands ~2-3
mm/µs, so fills 3 mm
high beam in fraction of 5
µs FWHM.

• If electrons from beam-
impact on gas, electron
production ∝∝∝∝ 1/cos

• SEY=13 & 1/cos ⇒
Electrons are from ion
impact on surface at an
average angle of 60°
from normal.

• At 60 °, ion reflection is
reduced to ~3%.

Mitigation technique: rough surface reduces SEY x10, gas
desorption x2, but harder to beam scrub.
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Electronic sputtering can account for larger gas
yields than physical sputtering

• Nuclear-elastic (knock-on) collisions ⇒ physical sputtering

• Electronic component ⇒ electronic sputtering.

• Sputtering from ion and electron bombardment of frozen gas is believed
to be the source of tenuous atmospheres on moons of outer planets.*

• Electronic sputtering applies to insulators, not metals. But observed
gases (H, C, O compounds) would have been insulators on surface.
* R. E. Johnson, “Sputtering of ices in the outer solar system” RMP 68, 305 (1996).

From TRIM Code:

Measured sputtering yield
for H+ and O+ incident on
H20 at ≤80K
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Electronic sputtering model is being tested by HIF-VNL
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SRIM 2003 for K+ ions on stainless steel

GSI

GSI Collaboration offers opportunity to test model over 
wide energy range, including that of HIF Driver and others
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Summary/conclusions

• HIF has attractive power plant prospects, but

- Desorption and ECE are major determinants of allowable fill factor

- Gas desorption coefficient appears marginal for cold-bore (for wall

characteristics studied), and may rule out a warm-bore approach.

• Electron emission scales with cos-1(θ) – Understood

• Gas desorption scales more slowly with angle.

• Electronic component of dE/dx is prime candidate for

supplying energy to drive emission and desorption.

• Particle source for desorption not primarily adsorbed layers

of gas – dust, inclusions, and oxide layers are candidates.
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Backup material
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Beam hitting gas or walls creates electrons and
gas — these can multiply

Beam on gas, Ib

K0

K2+

K+ Beam

1.0-1.8 MeV

2-5 kV potential

γ
γ

e-

i+

Beam loss to walls, Ibw

Fe

K+ Beam

K+

γ
e-

n0

n0

These interaction products create opportunities for
diagnostics along with problems for diagnostics and beams
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Energy (GeV)

Range
(g/cm2)

H He Li Ne Kr Pb

Range
for ICF
targets

1
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0.01
0.01 0.1 1 10

Heavier Ions ⇒⇒⇒⇒ Higher Kinetic Energy
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The IBX mission is to demonstrate integrated source-to-
focus physics
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$70 - 80 M TEC over 5 yrs
       + $10 M R&D
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Capability for pressure-rise issues
• Vary fill factor with accelerated & tilted beam
• Drift compression & final focus


